M1. (a) 37
These answers only.
Allow answers in words.

48
Ignore any sum(s) shown to work out the answers.
(b) (i) Electron gun / high speed/high energy electrons

Not just electrons. Not highly charged electrons.

Knock out electron(s)
Remove an electron.

$$
\mathbf{1}
$$

(ii) $\mathrm{Rb}(\mathrm{g}) \rightarrow \mathrm{Rb}^{+}(\mathrm{g})+\mathrm{e}^{(-)}$

OR
$R b(g)+e^{(-)} \rightarrow \mathrm{Rb}^{+}(\mathrm{g})+2 \mathrm{e}^{-(}$
OR
$R b(g)-e^{-} \rightarrow \mathrm{Rb}^{+}(\mathrm{g})$
Ignore state symbols for electron.
(c) Rb is a bigger (atom) / e further from nucleus / electron lost from a higher energy level/ More shielding in Rb / less attraction of nucleus in Rb for outer electron / more shells

Answer should refer to Rb not Rb molecule
If converse stated it must be obvious it refers to Na
Answer should be comparative.
(d) (i) $\mathrm{s} / \mathrm{block} \mathrm{s} / \mathrm{group} \mathrm{s}$

Only
(ii) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{1}$Allow 3d ${ }^{10}$ before $4 s^{2}$Allow in any order.
(e) $(85 \times 2.5)+87 \times 1$ 3.5
M1 is for top line
$=\underline{85.6}$Only1
OR
$(58 \times 5)+87 \times 2 \quad 7$
M1 ${ }^{85}$ Rb 71.4\% and ${ }^{87} R b 28.6 \%$
M2 divide by 100
1
85.6

$$
M 3=\underline{85.6}
$$

(f) Detector
Mark independently
Allow detection (plate).
Current / digital pulses / electrical signal related to abundance Not electrical charge.
(g) Smaller
Chemical error if not smaller, $C E=0 / 3$
If blank mark on.

Bigger nuclear charge / more protons in Sr Not bigger nucleus.

Similar/same shielding
QWC
(Outer) electron entering same shell/sub shell/orbital/same number of shells.
Do not allow incorrect orbital.

M2. (a) $2 \mathrm{Ca}_{5} \mathrm{~F}\left(\mathrm{PO}_{4}\right)_{3}+9 \mathrm{SiO}_{2}+15 \mathrm{C} \longrightarrow 9 \mathrm{CaSiO}_{3}+\mathrm{CaF}_{2}+15 \mathrm{CO}+6 \mathrm{P}$
(b) $\quad \mathbf{M} 1\left(\mathrm{P}_{4}=\mathbf{0}\right.$
$\mathbf{M 2}\left(\mathrm{H}_{3} \mathrm{PO}_{4}=\right)(+) \mathbf{5}$
Accept Roman numeral V for M2
(c) $\mathrm{H}_{2} \mathrm{SO}_{4}$

Both numbers required
$M_{r}=2(1.00794)+32.06550+4(15.99491)$
$=98.06102$ or 98.0610 or 98.061 or 98.06 or 98.1
Calculations not required
and
$\mathrm{H}_{3} \mathrm{PO}_{4}$

$$
\begin{aligned}
M_{r} \quad & =3(1.00794)+30.97376+4(15.99491) \\
& =97.97722 \text { or } 97.9772 \text { or } 97.977 \text { or } 97.98 \text { or } 98.0
\end{aligned}
$$

(d) (i) A substance that speeds up a reaction OR alters / increases the rate of a reaction AND is chemically unchanged at the end / not used up.

Both ideas needed

Ignore reference to activation energy or alternative route.
(ii) The addition of water (QoL) to a molecule / compound QoL- for the underlined words

1
(iii) $\mathbf{M 1} \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ $\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)$
For M1 insist on correct structure for the alcohol but credit correct equations using either $\mathrm{C}_{3} \mathrm{H}_{6}$ or double bond not given.

M2 propan-2-ol

M3.(a) $\frac{(82 \times 2)+(83 \times 2)+(84 \times 10)+(86 \times 3)}{17} \quad \frac{(1428)}{(17)}$
M1 for the top line
M2 is for division by 17
$=\underline{84.0}$
Not 84
No consequential marking from M1 or M2 Ignore units

The $A_{\text {t }}$ in the Periodic table takes account of the other isotopes /different amounts of isotopes (or words to that effect regarding isotopes)

Award independently

Comparison implied
Isotope(s) alone, M4 = 0
(b) (Beam of electrons from) an electron gun / high speed / high energy electrons

Knocks out electron(s) (to form a positive ion)
1
$\left.\mathrm{Kr}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Kr}^{+}(\mathrm{g})+2 \mathrm{e}^{-}\right)$
State symbols must clearly be (g)

OR

$\mathrm{Kr}(\mathrm{g}) \rightarrow \mathrm{Kr}^{+}(\mathrm{g})+\mathrm{e}\left(^{-}\right) / \mathrm{Kr}(\mathrm{g})-\mathrm{e}(-) \rightarrow \mathrm{Kr}^{+}(\mathrm{g})$
The ${ }^{84} \mathrm{Kr}$ isotope
One mark for identifying the 84 isotope

Has 2 electrons knocked out / gets a 2+ charge
One mark for the idea of losing 2 electrons (from this isotope)

M4. (a) Average/mean mass of (1) atom(s) (of an element)
$1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$
Accept answer in words
Can have top line $\times 12$ instead of bottom line $\div 12$

OR
(Average) mass of one mole of atoms $1 / 12$ mass of one mole of ${ }^{12} \mathrm{C}$

OR
(Weighted) average mass of all the isotopes
$1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$
OR
Average mass of an atom/isotope compared to C-12 on a scale in which an atom of C -12 has a mass of 12
$\frac{(95.12 \times 14)+(4.88 \times 15)}{100}$
100
Allow $95.12+4.88$ instead of 100
$=14.05$
If not to 2 d.p. then lose last mark
Not 14.04
(b) ${ }^{15} \mathrm{~N}$ is heavier/ ${ }^{15} \mathrm{~N}$ has a bigger $\mathrm{m} / \mathrm{z} /$ different m / z values

Not different no's of neutrons
Not ionisation potential

Electromagnet/electric field/magnet/accelerating potential or voltage/electric current
(c) No difference

Same no of electrons (in outer orbital/shell/sub shell)/same electron configuration

M2 dependent on M1
Not just electrons determine chemical properties Ignore protons

M5. Mass number = number of protons + neutrons (in the nucleus/atom)
Not in a substance or compound or element
Page 7

8 neutrons
(ii) Same electron configuration / same number of electrons (in the outer shell)

Ignore same no of protons
Ignore electrons determine chemical properties
CE if wrong statement relating to protons / neutrons
(b) Average mass of 1 atom (of an element)

1/12 mass atom of ${ }^{12} \mathrm{C}$
OR
Average/mean mass of atoms of an element
$1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$
OR
(Average) mass of one mole of atoms
$1 / 12$ mass of one mole of ${ }^{12} \mathrm{C}$
OR
(Weighted) average mass of all the isotopes
$1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$
OR

Average mass of an atom/isotope compared to C-12
on a scale in which an atom of $\mathrm{C}-12$ has a mass of 12
If moles and atoms mixes Max = 1
Mark top and bottom line independently
1/12 on bottom line can be represented as $x 12$ on top line
This expression $=2$ marks
(c) (i)

$$
\frac{(64 \times 12)+(66 \times 8)+(67 \times 1)+(68 \times 6)}{27} \frac{(=1771)}{27}
$$

If not 27 max 1 mark (for top line)

If evidence of arithmetic or transcription error seen in M1 or $65.6=3$ marks

$$
=\underline{65.6}
$$

Mark is for dividing by 27 or string M2 allow consequential M3 and consequential (c)(ii)
(e) (ions hit detector and) cause current/(ions) accept electrons/cause electron flow/electric pulse caused bigger current $=$ more of that isotope/current proportional to abundance Implication that current depends on the number of ions M2 dependent on M1

